Pentapent Compatibility

A pentapent is made by joining five regular pentagons edge to edge. Two or more polyforms are said to be compatible if there exists a figure that can be tiled with any of them. Here I present some compatibility figures for pentapents.

Scott Reynolds first studied pentapent compatibility and found most of the early solutions.

I adopt Erich Friedman's nomenclature:

 ABCDEFGHIJKLMNPQRSTUVWXYZ
A*442105555255556222552×225
B4*×26652×255552××2255×1034
C4×*22×255442×1085255410××5×
D222*542244422422255425×24
E10625*555×46255544×36??665
F56×45*51045?62×52253102?224
G552255*525525224265242×44
H52525105*2522?24?42565?645
I5×54×422*424?22?2852610×210
J224445554*5645424221524×44
K55446?5225*5?4255255?21042
L55222622465*252525552?×?6
M55×2525??4?2*4210?45?2?×25
N551045×2225454*44446562×104
P62825524242224*5245222×44
Q2×52424??2551045*?255552?5
R2×2242242452?42?*25221010230
S2255×562822544422*51054×52
T525533555255565555*55×645
U55446102621555?5252105*6×1086
V25102?24562?226252556*××?6
W×××5??2?1042??225104×××*×210
X210××62×6××10××××210×610××*2×
Y23526244244?2104?2548?22*4
Z54×4544510426544530256610×4*

2 Pentapents

3 Pentapents

4 Pentapents

5 Pentapents

6 Pentapents

8 Pentapents

10 Pentapents

15 Pentapents

30 Pentapents

Last revised 2018-03-10.


Back to Pairwise Compatibility < Polyform Compatibility < Polyform Curiosities
Col. George Sicherman [ HOME | MAIL ]