Hexomino Pair Rectangles with Holes

Introduction

Here are rectangles that can be formed by specified pairs of hexominoes, using at least one of each, and allowing any number of one-cell holes that do not touch one another at corners.

Hexomino Numbers

Table of Results

 1234567891011121314151617181920212223242526272829303132333435
1 3694113148810135575411141386119481114593771715
2 364410434787354436610468474764436688
3 6686548108664684466644864810103447101010
4 9484106??10??68?46???1010??16???458????
5 446410410581044454543345448463452551112
6 1110510103141210201488846861041088108161244416101830
7 3446433748445545466455436633536877
8 1438?10143?12??1114?1728???12???????4185????
9 8410?5127?10??96?1016???6???16???449????
10 878108104121016145410486101288158128142641041012188
11 1086?10208??16?48?88???108??????8810????
12 1376?4144??14?66?414???6???18???486????
13 53464841195464446886548836634834688
14 55684851464864638128547117777113268877
15 748?585??10??46410???108??8???4129????
16 54444441710484434898386861414101441034101010
17 43465652816881468108221616414222216823213681482426
18 1166?484??6??812?922??14???????8129????
19 1466?366??10??88?816??12???????41010????
20 13106?3106??12??65?316??12???????11109????
21 8441044412681065410841412128128101010162571181111
22 664105105??88?478614???8??????61248???
23 1188?485??15??811?822???12??????6108????
24 946?484??8??87?622???8??14???448????
25 474168103?1612?183781416???10??14???8128????
26 848?486??8??67?148???10??????6119????
27 11710?6166??14??67?1023???10??????101112????
28 14610?3123??26??311?1421???16??????6118????
29 54344434448443443841126648610633610310
30 9445545184108882121061210105121041211111139121433
31 3348243594106369389109748889128391010119
32 767?5166??10??48?414???118??????61210???
33 7610?5108??12??68?108???8???????101410???
34 17810?11187??18??87?1024???11???????3311???
35 15810?12307??8??87?1026???11???????1039???
 1234567891011121314151617181920212223242526272829303132333435

2 Tiles

3 Tiles

4 Tiles

5 Tiles

6 Tiles

7 Tiles

8 Tiles

9 Tiles

10 Tiles

11 Tiles

12 Tiles

13 Tiles

14 Tiles

15 Tiles

16 Tiles

17 Tiles

18 Tiles

20 Tiles

21 Tiles

22 Tiles

23 Tiles

24 Tiles

26 Tiles

28 Tiles

30 Tiles

Last revised 2025-12-17.


Back to Polyomino and Polyking Tiling < Polyform Tiling < Polyform Curiosities
Col. George Sicherman [ HOME | MAIL ]