Scaled Hexomino Pair Rectangles

Introduction

Here are the smallest known rectangles that can be formed by every pair of hexominoes, using at least one of each, and letting the hexominoes appear at any scale.

If you find a solution with fewer tiles or solve an unsolved case, please write.

See also Hexomino Pair Rectangles.

Hexomino Numbers

Table of Results

Of 595 possible pairs of hexominoes, 376 are known to be able to tile a rectangle with scaling.

 1234567891011121314151617181920212223242526272829303132333435
1 366473714814735103128121961191041212534312221920
2 34441049478745441010108610104541154638101112
3 642161261220102066612446814441464201030624416449664
4 64214246××42××68×46×××1230××16×××466×?××
5 4464735861444584846124844661134726111016
6 710122473?1650?211214941361414?452814?96??6?516496??
7 34663338394457484694754576545369710
8 7912×5?3×400××1317×13?×××24?××?×××4?5×?××
9 14420×8168×22××126×12?×××6?××?×××12328×?××
10 871042650340022?1610444101026??1250?8??96?69480???
11 14820×14?9××?×412×1414×××1814××?×××28?8×?××
12 776×4214××16×108×632×××16106××?×××856×?××
13 3466412413121041044461414146422141211121941434101110
14 55685145176412846310111254241471518131732510161410
15 10412×8947××44××464?×××1048××14×××4?7×?××
16 3444413413121014643411141038301269127134738141120
17 121046868??1021432610?11120100?4????64168?3675414??
18 8106×4144××6××1411×14120××18?××?×××11128×?××
19 12108×6146××?××1412×10100××12?××?×××41210×?××
20 19814×12?9××?××145×3?××12?××?×××11?13×?××
21 6641244424612181664108418121210241028222424210618102836
22 11104308527??50141064244830????10??????141121128???
23 91014×485××?××2214×12?×××24?×?×××8709×?××
24 1046×4144××8××147×6?×××10?×22×××1247×?××
25 454166?5?????1215149????28??22???1465????
26 12420×6967××?××1118×1264×××22?××?××20228×?××
27 121110×11?6××96××1213×7168×××24?××?××16128×?××
28 5530×3?5××?××1917×13?×××24?××?××11125×?××
29 34644644126288434431141121481214201611333056324
30 462467?5?329?5142?761212?1011270462212123410???
31 334625358486357378101361197588534991924
32 12816×61646××80××410×854×××1828××?×××30109?××
33 221044?11969?????1016?1414???10???????56?9???
34 191196×10?7××?××1114×11?×××28?××?×××3?19×?×
35 201264×16?10××?××1010×20?×××36?××?×××24?24×?×
 1234567891011121314151617181920212223242526272829303132333435

2 Tiles

3 Tiles

4 Tiles

5 Tiles

6 Tiles

7 Tiles

8 Tiles

9 Tiles

10 Tiles

11 Tiles

12 Tiles

13 Tiles

14 Tiles

15 Tiles

16 Tiles

17 Tiles

18 Tiles

19 Tiles

20 Tiles

21 Tiles

22 Tiles

24 Tiles

28 Tiles

30 Tiles

32 Tiles

36 Tiles

42 Tiles

44 Tiles

48 Tiles

50 Tiles

52 Tiles

54 Tiles

56 Tiles

64 Tiles

70 Tiles

80 Tiles

94 Tiles

96 Tiles

100 Tiles

102 Tiles

106 Tiles

112 Tiles

120 Tiles

164 Tiles

168 Tiles

400 Tiles

Last revised 2022-11-26.
Back to Polyomino and Polyking Tiling < Polyform Tiling < Polyform Curiosities
Col. George Sicherman [ HOME | MAIL ]