It has long been known that only four pentominoes can tile rectangles:
For other rectangles that these pentominoes tile, see Mike Reid's Rectifiable Polyomino Page.
On Scaled Two-Pentomino Rectangles I study the related problem of tiling some rectangle with two pentominoes at various sizes. Here I study the corresponding problem for three pentominoes in various sizes. If you find a solution with fewer tiles than one of mine, please write!
Bryce Herdt has already improved on one of my solutions.
See also Scaled Three-Pentomino Balanced Rectangles.
5F+5I+5L 5 | 5F+5I+5N 12 | 5F+5I+5P 6 | 5F+5I+5T 14 | 5F+5I+5U 6 |
---|---|---|---|---|
![]() | ![]() | ![]() | ![]() | ![]() |
5F+5I+5V 5 | 5F+5I+5W 14 | 5F+5I+5X 17 | 5F+5I+5Y 6 | 5F+5I+5Z 14 |
![]() | ![]() | ![]() | ![]() | ![]() |
5F+5L+5N 6 | 5F+5L+5P 4 | 5F+5L+5T 6 | 5F+5L+5U 5 | 5F+5L+5V 6 |
![]() | ![]() | ![]() | ![]() | ![]() |
5F+5L+5W 6 | 5F+5L+5X 9 | 5F+5L+5Y 5 | 5F+5L+5Z 7 | 5F+5N+5P 6 |
![]() | ![]() | ![]() | ![]() | ![]() |
5F+5N+5T 11 | 5F+5N+5U 6 | 5F+5N+5V 6 | 5F+5N+5W × | 5F+5N+5X × |
![]() | ![]() | ![]() | ![]() | ![]() |
5F+5N+5Y 7 | 5F+5N+5Z × | 5F+5P+5T 6 | 5F+5P+5U 3 | 5F+5P+5V 4 |
![]() | ![]() | ![]() | ![]() | ![]() |
5F+5P+5W 8 | 5F+5P+5X 9 | 5F+5P+5Y 5 | 5F+5P+5Z 6 | 5F+5T+5U 9 |
![]() | ![]() | ![]() | ![]() | ![]() |
5F+5T+5V 11 | 5F+5T+5W 16 | 5F+5T+5X × | 5F+5T+5Y 5 | 5F+5T+5Z × |
![]() | ![]() | ![]() | ![]() | ![]() |
5F+5U+5V 6 | 5F+5U+5W 6 | 5F+5U+5X 9 | 5F+5U+5Y 6 | 5F+5U+5Z 9 |
![]() | ![]() | ![]() | ![]() | ![]() |
5F+5V+5W 12 | 5F+5V+5X 13 | 5F+5V+5Y 4 | 5F+5V+5Z 7 | 5F+5W+5X × |
![]() | ![]() | ![]() | ![]() | ![]() |
5F+5W+5Y 8 | 5F+5W+5Z × | 5F+5X+5Y 6 | 5F+5X+5Z × | 5F+5Y+5Z 6 |
![]() | ![]() | ![]() | ![]() | ![]() |
5I+5L+5N 5 | 5I+5L+5P 4 | 5I+5L+5T 5 | 5I+5L+5U 5 | 5I+5L+5V 4 |
![]() | ![]() | ![]() | ![]() | ![]() |
5I+5L+5W 5 | 5I+5L+5X 6 | 5I+5L+5Y 6 | 5I+5L+5Z 7 | 5I+5N+5P 5 |
![]() | ![]() | ![]() | ![]() | ![]() |
5I+5N+5T 6 | 5I+5N+5U 5 | 5I+5N+5V 5 | 5I+5N+5W 12 | 5I+5N+5X 17 |
![]() | ![]() | ![]() | ![]() | ![]() |
5I+5N+5Y 6 | 5I+5N+5Z 11 | 5I+5P+5T 4 | 5I+5P+5U 5 | 5I+5P+5V 4 |
![]() | ![]() | ![]() | ![]() | ![]() |
5I+5P+5W 5 | 5I+5P+5X 6 | 5I+5P+5Y 4 | 5I+5P+5Z 4 | 5I+5T+5U 11 |
![]() | ![]() | ![]() | ![]() | ![]() |
5I+5T+5V 6 | 5I+5T+5W 7 | 5I+5T+5X 17 | 5I+5T+5Y 5 | 5I+5T+5Z 12 |
![]() | ![]() | ![]() | ![]() | ![]() |
5I+5U+5V 4 | 5I+5U+5W 15 | 5I+5U+5X 4 | 5I+5U+5Y 6 | 5I+5U+5Z 7 |
![]() | ![]() | ![]() | ![]() | ![]() |
5I+5V+5W 10 | 5I+5V+5X 11 | 5I+5V+5Y 6 | 5I+5V+5Z 4 | 5I+5W+5X 21 |
![]() | ![]() | ![]() | ![]() | ![]() |
5I+5W+5Y 6 | 5I+5W+5Z 11 | 5I+5X+5Y 6 | 5I+5X+5Z 16 | 5I+5Y+5Z 6 |
![]() | ![]() | ![]() | ![]() | ![]() |
5L+5N+5P 4 | 5L+5N+5T 6 | 5L+5N+5U 5 | 5L+5N+5V 3 | 5L+5N+5W 6 |
![]() | ![]() | ![]() | ![]() | ![]() |
5L+5N+5X 7 | 5L+5N+5Y 4 | 5L+5N+5Z 5 | 5L+5P+5T 4 | 5L+5P+5U 4 |
![]() | ![]() | ![]() | ![]() | ![]() |
5L+5P+5V 3 | 5L+5P+5W 5 | 5L+5P+5X 7 | 5L+5P+5Y 4 | 5L+5P+5Z 4 |
![]() | ![]() | ![]() | ![]() | ![]() |
5L+5T+5U 8 | 5L+5T+5V 6 | 5L+5T+5W 8 | 5L+5T+5X 6 | 5L+5T+5Y 3 |
![]() | ![]() | ![]() | ![]() | ![]() |
5L+5T+5Z 5 | 5L+5U+5V 5 | 5L+5U+5W 6 | 5L+5U+5X 4 | 5L+5U+5Y 4 |
![]() | ![]() | ![]() | ![]() | ![]() |
5L+5U+5Z 6 | 5L+5V+5W 8 | 5L+5V+5X 7 | 5L+5V+5Y 6 | 5L+5V+5Z 5 |
![]() | ![]() | ![]() | ![]() | ![]() |
5L+5W+5X 9 | 5L+5W+5Y 6 | 5L+5W+5Z 9 | 5L+5X+5Y 7 | 5L+5X+5Z 9 |
![]() | ![]() | ![]() | ![]() | ![]() |
5L+5Y+5Z 5 | 5N+5P+5T 6 | 5N+5P+5U 3 | 5N+5P+5V 4 | 5N+5P+5W 6 |
![]() | ![]() | ![]() | ![]() | ![]() |
5N+5P+5X 8 | 5N+5P+5Y 4 | 5N+5P+5Z 6 | 5N+5T+5U 10 | 5N+5T+5V 7 |
![]() | ![]() | ![]() | ![]() | ![]() |
5N+5T+5W 10 | 5N+5T+5X 14 | 5N+5T+5Y 5 | 5N+5T+5Z 13 | 5N+5U+5V 6 |
![]() | ![]() | ![]() | ![]() | ![]() |
5N+5U+5W 12 | 5N+5U+5X 7 | 5N+5U+5Y 6 | 5N+5U+5Z 6 | 5N+5V+5W 6 |
![]() | ![]() | ![]() | ![]() | ![]() |
5N+5V+5X 13 | 5N+5V+5Y 5 | 5N+5V+5Z 6 | 5N+5W+5X × | 5N+5W+5Y 8 |
![]() | ![]() | ![]() | ![]() | ![]() |
5N+5W+5Z × | 5N+5X+5Y 8 | 5N+5X+5Z × | 5N+5Y+5Z 7 | 5P+5T+5U 6 |
![]() | ![]() | ![]() | ![]() | ![]() |
5P+5T+5V 4 | 5P+5T+5W 6 | 5P+5T+5X 8 | 5P+5T+5Y 4 | 5P+5T+5Z 6 |
![]() | ![]() | ![]() | ![]() | ![]() |
5P+5U+5V 3 | 5P+5U+5W 6 | 5P+5U+5X 5 | 5P+5U+5Y 3 | 5P+5U+5Z 5 |
![]() | ![]() | ![]() | ![]() | ![]() |
5P+5V+5W 6 | 5P+5V+5X 7 | 5P+5V+5Y 4 | 5P+5V+5Z 4 | 5P+5W+5X 7 |
![]() | ![]() | ![]() | ![]() | ![]() |
5P+5W+5Y 5 | 5P+5W+5Z 6 | 5P+5X+5Y 6 | 5P+5X+5Z 8 | 5P+5Y+5Z 4 |
![]() | ![]() | ![]() | ![]() | ![]() |
5T+5U+5V 6 | 5T+5U+5W 16 | 5T+5U+5X 18 | 5T+5U+5Y 4 | 5T+5U+5Z 12 |
![]() | ![]() | ![]() | ![]() | ![]() |
5T+5V+5W 11 | 5T+5V+5X 18 | 5T+5V+5Y 7 | 5T+5V+5Z 10 | 5T+5W+5X 20 |
![]() | ![]() | ![]() | ![]() | ![]() |
5T+5W+5Y 6 | 5T+5W+5Z 16 | 5T+5X+5Y 8 | 5T+5X+5Z × | 5T+5Y+5Z 7 |
![]() | ![]() | ![]() | ![]() | ![]() |
5U+5V+5W 17 | 5U+5V+5X 6 | 5U+5V+5Y 6 | 5U+5V+5Z 6 | 5U+5W+5X 11 |
![]() | ![]() | ![]() | ![]() | ![]() |
5U+5W+5Y 6 | 5U+5W+5Z 12 | 5U+5X+5Y 6 | 5U+5X+5Z 9 | 5U+5Y+5Z 7 |
![]() | ![]() | ![]() | ![]() | ![]() |
5V+5W+5X 37 | 5V+5W+5Y 8 | 5V+5W+5Z 12 | 5V+5X+5Y 9 | 5V+5X+5Z 9 |
![]() | ![]() | ![]() | ![]() | ![]() |
5V+5Y+5Z 4 | 5W+5X+5Y 9 | 5W+5X+5Z × | 5W+5Y+5Z 8 | 5X+5Y+5Z 9 |
![]() | ![]() | ![]() | ![]() | ![]() |
Last revised 2022-12-18.