Here I show minimal known convex polygons formed by pairs of polyiamonds with 4 through 7 cells. If you find a smaller solution or solve an unsolved case, please write.
At Math Magic for April 1999, Erich Friedman considers for various plane shapes the set of values of n for which n copies of the shape can form a convex shape. Ed Pegg Jr. also considers this problem at Dissections of Convex Figures.
See also Minimal Convex Polyiamond Tilings.
• | 4 | 2 | |
4 | • | 5 | |
2 | 5 | • |
2 | 3 | 2 | |
3 | 3 | 3 | |
3 | 4 | 14 | |
4 | 3 | 3 |
• | 3 | 3 | 3 | |
3 | • | 3 | 4 | |
3 | 3 | • | 3 | |
3 | 4 | 3 | • |
2 | 5 | 3 | |
2 | 5 | 4 | |
? | 7 | ? | |
3 | 5 | 3 | |
5 | 2 | 4 | |
3 | 3 | 3 | |
3 | 5 | 3 | |
5 | 5 | ? | |
6 | 5 | ? | |
3 | 2 | ? | |
3 | 3 | 3 | |
5 | 12 | ? |
2 | 4 | 4 | 4 | |
2 | 3 | 4 | 3 | |
6 | 4 | 38 | 4 | |
3 | 2 | 3 | 8 | |
4 | 2 | 2 | 4 | |
3 | 4 | 3 | 2 | |
3 | 6 | 7 | 2 | |
4 | 3 | 10 | 6 | |
6 | 3 | 22 | ? | |
4 | 3 | 2 | ? | |
3 | 2 | 4 | 6 | |
4 | 5 | 38 | 5 |
• | 5 | ? | 3 | 8 | 3 | 3 | 12 | 8 | 3 | 3 | ? | |
5 | • | 7 | 7 | 4 | 4 | 4 | 7 | 7 | 4 | 6 | 8 | |
? | 7 | • | 8 | 3 | 4 | ? | ? | ? | 4 | 12 | ? | |
3 | 7 | 8 | • | 8 | 4 | 4 | 8 | 12 | 4 | 2 | 4 | |
8 | 4 | 3 | 8 | • | 5 | 8 | 4 | 3 | 13 | 3 | 8 | |
3 | 4 | 4 | 4 | 5 | • | 2 | 6 | 7 | 21 | 4 | 17 | |
3 | 4 | ? | 4 | 8 | 2 | • | 22 | 30 | 25 | 4 | ? | |
12 | 7 | ? | 8 | 4 | 6 | 22 | • | ? | 8 | 4 | ? | |
8 | 7 | ? | 12 | 3 | 7 | 30 | ? | • | ? | 3 | ? | |
3 | 4 | 4 | 4 | 13 | 21 | 25 | 8 | ? | • | 3 | 3 | |
3 | 6 | 12 | 2 | 3 | 4 | 4 | 4 | 3 | 3 | • | 7 | |
? | 8 | ? | 4 | 8 | 17 | ? | ? | ? | 3 | 7 | • |
2 | 3 | 4 | |
2 | 3 | 6 | |
8 | 4 | ? | |
2 | 5 | 4 | |
2 | 4 | 6 | |
2 | 3 | 4 | |
4 | 4 | 5 | |
14 | 4 | ? | |
4 | 4 | 36 | |
4 | 2 | 18 | |
5 | 11 | ? | |
2 | 2 | 2 | |
6 | 4 | ? | |
4 | 4 | ? | |
5 | 6 | ? | |
4 | 2 | 4 | |
5 | 6 | ? | |
4 | 6 | 30 | |
6 | 4 | ? | |
4 | 7 | ? | |
8 | 8 | ? | |
10 | ? | ? | |
4 | 6 | 162 | |
3 | 3 | 7 |
2 | 4 | 3 | 3 | |
3 | 4 | 3 | 6 | |
7 | 4 | 20 | 8 | |
2 | 3 | 5 | 3 | |
2 | 4 | 4 | 4 | |
3 | 4 | 3 | ? | |
4 | 3 | 4 | 3 | |
10 | 4 | 8 | 3 | |
7 | 5 | 4 | 4 | |
4 | 2 | 2 | ? | |
6 | 4 | 12 | ? | |
3 | 3 | 2 | ? | |
14 | 4 | 6 | ? | |
9 | 4 | 6 | 12 | |
5 | 4 | 20 | 4 | |
4 | 2 | 2 | 4 | |
7 | 6 | 6 | ? | |
5 | 4 | 18 | 51 | |
9 | 5 | 4 | ? | |
4 | 4 | 30 | 6 | |
9 | 5 | 42 | 66 | |
11 | 4 | 7 | ? | |
4 | 3 | 6 | 6 | |
4 | 6 | 4 | 4 |
2 | 4 | 6 | 5 | 4 | 3 | 3 | 8 | 17 | 4 | 5 | 5 | |
4 | 3 | 6 | 8 | 3 | 4 | 6 | 8 | 5 | 10 | 6 | 5 | |
9 | 7 | ? | 8 | 3 | 4 | 8 | 15 | 27 | 10 | 8 | ? | |
5 | 6 | ? | 10 | 12 | 8 | 8 | 12 | ? | ? | 8 | ? | |
3 | 5 | 6 | 6 | 8 | 5 | 6 | 5 | 8 | ? | 5 | ? | |
4 | 3 | 6 | 6 | 18 | 2 | 6 | 8 | ? | ? | 6 | 5 | |
4 | 5 | 7 | 10 | 2 | 3 | 6 | 12 | ? | ? | 6 | 690 | |
93 | 6 | ? | 15 | 24 | 6 | ? | 15 | ? | 2 | 6 | ? | |
8 | 5 | 8 | 10 | 4 | 5 | 7 | 8 | 11 | ? | 6 | ? | |
8 | 6 | 3 | 29 | ? | 10 | 18 | 6 | 3 | ? | 6 | 6 | |
14 | 17 | ? | 6 | 4 | 13 | 22 | ? | ? | ? | 6 | ? | |
3 | 2 | 3 | 3 | 18 | 3 | 3 | 4 | ? | ? | 3 | 3 | |
24 | 7 | 2 | 168 | ? | 12 | ? | 12 | ? | ? | 10 | ? | |
16 | 6 | 12 | 18 | 18 | 6 | 22 | ? | ? | ? | 8 | ? | |
162 | 7 | ? | 6 | 3 | 9 | 12 | ? | ? | 4 | 10 | ? | |
6 | 6 | 3 | 10 | 16 | 5 | 6 | 6 | 3 | ? | 6 | 324 | |
14 | 12 | 15 | 15 | 4 | 8 | 20 | ? | ? | ? | 9 | ? | |
11 | 7 | ? | 12 | 15 | 10 | 23 | ? | ? | ? | 8 | ? | |
? | 6 | 8 | 10 | 24 | 14 | 28 | 72 | ? | ? | 9 | ? | |
6 | 7 | ? | 10 | 6 | 10 | 10 | ? | ? | ? | 6 | ? | |
? | 10 | ? | 8 | 6 | 14 | 354 | ? | ? | 15 | 14 | ? | |
? | 28 | ? | 40 | 15 | 10 | 54 | ? | ? | ? | 4 | ? | |
6 | 7 | 8 | 5 | 6 | 10 | 10 | 24 | 72 | 4 | 8 | ? | |
5 | 5 | 4 | 10 | 6 | 6 | 10 | ? | ? | ? | 10 | ? |
• | 6 | 16 | 4 | 3 | 4 | 4 | 16 | 8 | 4 | 7 | 4 | 57 | 24 | 5 | 4 | 8 | 4 | 22 | 10 | 30 | 378 | 6 | 10 | |
6 | • | 8 | 7 | 6 | 10 | 5 | 4 | 14 | 6 | 10 | 2 | 14 | 10 | 6 | 6 | 10 | 6 | 4 | 14 | 18 | 378 | 6 | 30 | |
16 | 8 | • | ? | 6 | 27 | 14 | ? | 4 | 4 | 10 | 4 | 2 | 4 | 378 | 4 | 14 | 32 | 16 | ? | ? | ? | 6 | ? | |
4 | 7 | ? | • | 12 | 6 | 5 | 378 | 24 | 34 | 378 | 2 | 378 | 10 | 378 | 5 | 34 | 66 | 16 | ? | ? | ? | 24 | ? | |
3 | 6 | 6 | 12 | • | 6 | 6 | ? | 6 | ? | 6 | 4 | ? | 6 | 6 | 18 | 4 | 16 | 16 | 8 | 6 | ? | 24 | ? | |
4 | 10 | 27 | 6 | 6 | • | 4 | ? | ? | 4 | ? | ? | ? | ? | 4 | 56 | 4 | 6 | ? | 168 | 168 | ? | 6 | 2 | |
4 | 5 | 14 | 5 | 6 | 4 | • | ? | 4 | 4 | ? | 4 | ? | 4 | 16 | 2 | ? | 24 | 4 | 10 | 42 | ? | 10 | 6 | |
16 | 4 | ? | 378 | ? | ? | ? | • | ? | 6 | ? | 2 | ? | 4 | ? | 42 | ? | 672 | ? | ? | ? | ? | 18 | ? | |
8 | 14 | 4 | 24 | 6 | ? | 4 | ? | • | 4 | ? | 4 | ? | ? | 16 | 4 | 16 | 1050 | 6 | 672 | ? | ? | 24 | 54 | |
4 | 6 | 4 | 34 | ? | 4 | 4 | 6 | 4 | • | 4 | ? | ? | 30 | 24 | 78 | 4 | ? | ? | 42 | 16 | ? | 16 | ? | |
7 | 10 | 10 | 378 | 6 | ? | ? | ? | ? | 4 | • | ? | 4 | ? | ? | 4 | ? | ? | ? | ? | ? | ? | 42 | ? | |
4 | 2 | 4 | 2 | 4 | ? | 4 | 2 | 4 | ? | ? | • | ? | ? | 4 | 4 | ? | 4 | ? | 4 | 5 | ? | 4 | 4 | |
57 | 14 | 2 | 378 | ? | ? | ? | ? | ? | ? | 4 | ? | • | 4 | 4 | ? | 10 | ? | ? | ? | 4 | ? | 10 | ? | |
24 | 10 | 4 | 10 | 6 | ? | 4 | 4 | ? | 30 | ? | ? | 4 | • | ? | 58 | 34 | ? | ? | ? | ? | ? | 42 | 12 | |
5 | 6 | 378 | 378 | 6 | 4 | 16 | ? | 16 | 24 | ? | 4 | 4 | ? | • | 3 | ? | ? | 74 | ? | ? | ? | 42 | ? | |
4 | 6 | 4 | 5 | 18 | 56 | 2 | 42 | 4 | 78 | 4 | 4 | ? | 58 | 3 | • | 4 | 168 | 18 | 10 | 12 | ? | 10 | ? | |
8 | 10 | 14 | 34 | 4 | 4 | ? | ? | 16 | 4 | ? | ? | 10 | 34 | ? | 4 | • | ? | ? | ? | ? | ? | 168 | ? | |
4 | 6 | 32 | 66 | 16 | 6 | 24 | 672 | 1050 | ? | ? | 4 | ? | ? | ? | 168 | ? | • | 42 | ? | ? | ? | ? | ? | |
22 | 4 | 16 | 16 | 16 | ? | 4 | ? | 6 | ? | ? | ? | ? | ? | 74 | 18 | ? | 42 | • | ? | ? | ? | 30 | ? | |
10 | 14 | ? | ? | 8 | 168 | 10 | ? | 672 | 42 | ? | 4 | ? | ? | ? | 10 | ? | ? | ? | • | ? | ? | 168 | ? | |
30 | 18 | ? | ? | 6 | 168 | 42 | ? | ? | 16 | ? | 5 | 4 | ? | ? | 12 | ? | ? | ? | ? | • | ? | 42 | ? | |
378 | 378 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | • | ? | ? | |
6 | 6 | 6 | 24 | 24 | 6 | 10 | 18 | 24 | 16 | 42 | 4 | 10 | 42 | 42 | 10 | 168 | ? | 30 | 168 | 42 | ? | • | ? | |
10 | 30 | ? | ? | ? | 2 | 6 | ? | 54 | ? | ? | 4 | ? | 12 | ? | ? | ? | ? | ? | ? | ? | ? | ? | • |
Last revised 2024-08-03.