I indicate mirror images with a prime mark (′). For example, S′ denotes the mirror image of pentacube S.
All but two of the pentacubes, G and X, can tile a rectangular prism, or box. A box is odd if it has an odd number of cells. Such a box must have all its dimensions odd.
Here I show the smallest odd box known to be tilable with each pair of pentacubes, using at least one copy of each of the two pentacubes. If you find a solution smaller than one shown, or solve an unsolved case, please write.
See also Pentacube Pair Boxes.
A | B | E | E′ | F | G | G′ | H | H′ | I | J | J′ | K | L | M | N | P | Q | R | R′ | S | S′ | T | U | V | W | X | Y | Z | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 25 | 9 | 15 | ? | 45 | 21 | 15 | 15 | 15 | 25 | 15 | 9 | 45 | ? | 15 | 15 | 15 | 15 | 21 | ? | 15 | 15 | |||||||
B | 15 | 21 | 49 | 45 | 15 | 9 | 15 | 15 | 35 | 15 | 9 | 15 | 25 | 21 | 15 | 9 | 15 | 21 | 49 | 15 | 21 | ||||||||
E | 15 | 15 | 15 | 21 | 15 | 15 | 9 | 9 | 9 | 9 | 9 | 9 | 15 | 9 | 9 | 9 | 15 | 9 | 15 | 15 | 9 | 9 | 9 | 21 | 15 | 15 | |||
F | 21 | 15 | 9 | 15 | 15 | 7 | 21 | 15 | 9 | 15 | 21 | 15 | 21 | 9 | 9 | 21 | 63 | 5 | 9 | ||||||||||
G | × | 45 | ? | 27 | 15 | 9 | 21 | 15 | ? | 21 | 9 | 45 | ? | ? | 33 | 21 | 27 | 15 | 15 | 33 | ? | 15 | 39 | ||||||
H | 45 | 9 | 9 | 9 | 9 | 9 | 21 | 15 | 9 | 45 | 45 | 45 | 15 | 15 | 15 | 15 | 9 | 9 | 35 | 15 | 15 | ||||||||
I | 15 | 21 | 3 | 15 | 15 | 3 | 9 | 15 | 21 | 9 | 9 | 7 | 9 | 9 | 7 | 9 | |||||||||||||
J | 9 | 9 | 9 | 15 | 9 | 9 | 9 | 9 | 15 | 9 | 9 | 9 | 9 | 9 | 9 | 21 | 9 | 9 | |||||||||||
K | 15 | 21 | 15 | 9 | 9 | 15 | 27 | 21 | 9 | 15 | 9 | 15 | 15 | 15 | |||||||||||||||
L | 15 | 7 | 3 | 9 | 9 | 15 | 9 | 9 | 9 | 9 | 5 | 9 | 9 | ||||||||||||||||
M | 21 | 9 | 15 | ? | 15 | 21 | 9 | 21 | 21 | × | 15 | 21 | |||||||||||||||||
N | 9 | 15 | 21 | 15 | 15 | 9 | 15 | 21 | 25 | 21 | 15 | ||||||||||||||||||
P | 9 | 9 | 9 | 3 | 9 | 3 | 9 | 5 | 3 | 3 | |||||||||||||||||||
Q | 45 | 9 | 9 | 15 | 9 | 9 | 15 | 15 | 9 | ||||||||||||||||||||
R | 45 | 21 | 21 | 15 | 9 | 15 | 21 | 117 | 15 | 15 | |||||||||||||||||||
S | 27 | 21 | 15 | 21 | 21 | 15 | 15 | 15 | |||||||||||||||||||||
T | 9 | 15 | 21 | 55 | 9 | 25 | |||||||||||||||||||||||
U | 9 | 21 | 3 | 11 | 9 | ||||||||||||||||||||||||
V | 21 | 49 | 15 | 3 | |||||||||||||||||||||||||
W | 57 | 15 | 15 | ||||||||||||||||||||||||||
X | 5 | 63 | |||||||||||||||||||||||||||
Y | 5 | ||||||||||||||||||||||||||||
Z |
M and X, colored like a 3D checkerboard, have four cells of one color and one of the other. Thus an odd number of M and X pentacubes have a net color imbalance that is an odd multiple of 3. Every odd box has a color imbalance of 1.
Last revised 2024-02-05.